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ABSTRACT s

In this report the results of aerodynamic and heat T
transfer experimental investigations performed in a
high Reynolds number turbine cascade test facility are Tu
analyzed. The experimental facility simulates the
high Reynolds number flow conditions similar to those V
encountered in the space shuttle main engine. In order
to determine the influence of Reynolds number on aero- w
dynamic and thermal behavior of the blades, heat trans-
fer coefficients were measured at various Reynolds

numbers using liquid crystal temperature measurement
technique. Potential flow calculation methods were
used to predict the cascade pressure distributions.
Boundary layer and heat transfer calculation methods _-

were used with these pressure distributions to verify
the experimental results. 0

NOMENCLATURE

c blade chord

heat transfer coefficient

P

P/Ptot

rLE

rTE

Re

S/Smax

S/Stot

pressure

static.to"total pressure ratio

blade leading edge radius

blade trailing edge radius

Reynolds number based on blade chord

ratio of blade surface distance measured from

the leading edge to trailing edge for each
surface

ratio of blade surface distance measured from

the suction surface trailing edge to the pres-
sure surface trailing edge around the blade

cascade spacing or pitch

total temperature
.

turbulence intensity

flow velocity

blade span or width

flow angle measured from the horizontal

deviation angle from the flow angle

boundary layer displacement thickness

boundary layer momentum thickness

Subscripts

static conditions

total conditions

inlet flow station

exit flo_ station

INTRODUCTION

Gas turbines used in the space shuttle main engine
(SSME} turhopumps have been failing prematurely. The
turbine blading develops cracks that require the tur-

bines to be replaced more frequently than desired.
The turbine cracking appears to be caused by extreme
temperature fluctuations. These fluctuations are

most extreme during engine start up and shut dottm
(Abdul-aziz et el., 1989). The nature of these temper-
ature fluctuations and the resulting heat transfer is
not fully understood.
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Onecontributingfactor to the heat transfer prob-
lem encountered in the SSME is the external flow
through the turbine blading. This flow is not typical
of the flow found in aircraft gas turbines. The work-
ing fluid is hydrogen rich stream, and the pressure is

very high. The high pressure causes the turbine blade
Reynolds number and correspondingly the heat transfer
coefficients to be an order of magnitude greater than
those found in aircraft gas turbines.

An experiment was designed to provide basic heat
transfer data at these higher Reynolds numbers. The
experiment is intended to give turbine designers a bet-
ter understanding of the heat transfer resulting from

these flows. This knowledge should help designers in
finding a solution to the SSI_ turbine failure problem,
and provide insight into improving the design of future
rocket turbopumps.

The high Reynolds number experiment has produced
preliminary data. This data was analyzed using conven-
tional inviscid flow solver and boundary layer tech-

niques. The analysis was performed to verify the
experimental design and to show the applicability of
conventional heat transfer methods. Findings from the
analysis will be used to improve the experiment before
the final data is taken. The results from the experi-
ment, the analysis, and reco_endations to improve the
experiments are reported in this paper.

NECESSITY FOR EXPERIMENTAL RESEARCH

Quantitative prediction of the heat transfer
behavior of turbine blades requires calculation methods
that include governing parameters describing the physi-
cal conditions. For the design of turbomachinery
blades, usually combined inviscid and viscous flow cal-
culation procedures are utilized. Methods by McFarland

(1985) and Katsanis (1977) can be used for calculation
of the inviscid flow field. For the calculation of the

viscous layer, integral or differential boundary layer
calculation methods are used that in general contain
correlations derived from flat plate experiments dis-
regarding the free stream turbulence situation. To
incorporate the turbulent characteristic into the
boundary layer calculation procedure, Patankar and
Spalding (1970) developed a differential method capable
of solving the simplified time averaged Reynolds dif-
ferential equation system consisting of conservation
laws of continuity, momentum and energy. This method

was improved by Spalding (1973), (1977) and tailored to
the turbomachinery design needs by Spalding resulting
in an advanced version called BTFT (Runchal, 1974).

Crawford and Kays (1976) introduced a modified version
of Spalding's program called STANS. This code extended
by Gaugler (1981) is capable of qualitatively predict-
ing the heat "tran's_e_ coefficient. Since the existing
transition models incorporated in the code do not

adequately describe the transition phenomenon under
turbomachinery condition, a quantitative prediction
remains questionable. Test studies reported by Caugler
(1985) show that, without the exact knowledge of the
transition start point and length, with STAN5, a number
of iterations must be performed until a reasonable

agreement between computed and measured results is
obtained. The results presented in this report indi-
cate that the existing boundary layer calculation meth-

ods in integral or differential form cannot be consid-
ered as a reliable a priori predictive design tool
unless the basic mechanisms mentioned above are com-
pletely described and implemented into the calculation
procedure.

EXPERIMENT

Since current heat transfer calculations do not
predict heat transfer adequately and the SSME turbine
Reynolds numbers are in a range where little heat
transfer data exists, an experimental facility was

designed and built to provide data at high Reynolds
numbers. The high Reynolds numbers were achieved by
building a large scale test blade. The blade size was
chosen to get the largest Reynolds number possible
using an existing one vane wind tunnel. Details of the
experiment are given in a report by Yeh et el. (1990).
A schematic of the test section is given in Fig. 1.

Details of'the test blade geometry and tested flow con-
ditions are given in Tables i and 2 respectively.

The large scale of the experiment proved to be a
benefit in instrumenting the test vane. Two blades
were constructed. One was for aerodynamic data, and
the other was for heat transfer data. The large size
of the blade allowed inclusion of 52 surface pressure
taps on the aerodynamic blade..This large number of
surface pressure measurements provided detailed infor-
mation about the blade loading and surface flow. For

the heat transfer blade the.large scale facilitated
the use of liquid crystals for heat transfer measure-

ments. The liquid crystal technique has been shown by

Hippensteele and Russell (1988) to provide high resolu-
tion heat transfer data.

E_perimental Measurements
Both aerodynamic and heat transfer data were

measured for three different Reynolds numbers
(Re = 1.33x106, 3.65x106, and 6.36x106). The upstream
flow conditions were measured at a single mid-channel

location. Total and static pressure, total tempera-
ture, and free stream turbulence were measured. The
free stream turbulence for all three Reynolds numbers
was 2.1 percen_ (Tu _0.021). This is the natural tur-
bulence level of the tunnel. The upstream flow condi-
tions are given in Table 2. Experimental surface
pressures were measured. Surface pressure data for two
of the Reyrrolds numbers are shown in Figs. 3 and 4.
The heat transfer data was taken at several locations

along the blade surface. The liquid crystal technique
allows data to be taken selectively along the blade

surface. In this experiment the heat transfer data was
concentrated in regions of rapidly changing heat trans-
fer coefficient. Such regions usually indicate transi-
tion to turbulent flow. The heat transfer data was
reported in terms of heat transfer coefficient, h.

This data can be'seen in Figs. 5 through 9. During the
highest Reynolds number test, the heat transfer blade
failed. The limited data taken at this Reynolds number
should be considered less accurate when compared to
the other data.

Future Experimental Work
The experimental data taken to this point is con-

sidered preliminary. The test were carried out to
nvestigate the experimental design and technique. Fur-
ther testing is planned in the facility after refine-
ments to the experiment have been made. The new tests
will repeat the flow condition reported here in order
to gain more confidence in the experiment. In addi-
tion the effect of increasing the free stream turbu-
lence will also be investigated.



Suction Surface Pressure Surface

x(m) y(m) x(m) y(m)

0.000000
0.037727

0.053849
0.102601
0.140494
0.172551
0.000000

0.000000
0.027470

0.027435
0.007260

-0.026737
-0.068164

0.000000

.000000

.043945

.067185

.089764

.132255

.000000

0.000000

-0.026293
-0.037826
-0.050201
i-0.078345

; 0,000000

)

Span: w = 0.215.9m
Chord: c = 0.28167m

Spacing: s = 0.16337m
Camber Angle: a 2 = -61.7 o
Leading edge radius: rLE = 0.02172m
Trailing edge radius: rTE = 0.00381m

Table i: Geometric specifications of the single

turbine blade heat transfer test facility

Re m(kg/s) TI(°K) Vl(m/s ) ps(kPa) pt(kPa)

1.33XI06 3.76 294.9 16.98 264.34 264.62

3.65xi06 10.31 290.3 45.87 263.84 -266.45
6.36xi06 17.59 285.8 75.66 268.91 276.17

Table 2: Inlet flow conditions used for the flow analysis
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ANALYSIS

Ln analysis of the experimental data was performed.
The conventional inviscid-viscous flow calculation of

combining a potential flow with boundary layer and heat
transfer calculations was used. The primary purposes
in making this analysis was to verify the experimental
technique and identify improvements that could he made
to the experiment. A secondary purpose was to investi-
gate how well a conventional inviscid-viscous calcula-
tion method analyzes high Reynolds number turbine flows.

Potential Flow Calculation
For the calculation of pressure distribution,

inviscid flow calculation methods such as panel method
by McFarland (1985) and finite difference calculation
procedure by Katsanis (1977) have proved to generate
reasonable results. Both methods use the equation of
continuity for subsonic flow calculations. McFarland
introduces a velocity potential and solves the result-
ing approximate compressible flow equations using an
extended singularity method with variable strengths.
As a solution of the these equations, the velocity dis-
tribution is obtained by treating the integral equation
numerically and relating it to the pressure by an isen-
tropic relation.

Katsanis uses the stream function method developed
by Vavra (1968) and applies a finite difference method
directly to find the solution to the partial differen-
tial equation for stream functions. Since the physical

background for both methods are the same, similar
results are anticipated. For the analysis presented,
the singularity method was used for the calculation of

velocity distribution necessary for heat transfer
calculations.

Results: Pressure Distribution

Before presenting the results, the specific con-
figuration of the facility and its effects on the flow
kinematics at the inlet and exit of the test section

are discussed. The test section, shown in Fig. 1, has
been designed to simulate a cascade flow, which is by
definition a periodic flow. However the kinematic con-
ditions at the inlet and exit differs from those in a

cascade. Unlike the cascade flow, the flow in this
test section experiences a sudden contraction at sta-
tion 1 due to the existence of leading edges of the two
adjacent side walls. By impinging on these leading
edges, the.flow generates corner vortices producing
entropy that leads to higher total pressure losses.
This effect has in connection with the heat transfer
experimental program no significant consequences. At
the exit station 2, the boundary layer flow on the con-
vex channel wall encounters a sudden expansion that
affects the exit flow angle. However, a correct exit
flow angle is a fundamental requirement for an appro-
priate calculation of pressure distribution around a
cascade profile. Under these circumstances, a reasona-
ble agreement between a cascade flow calculation and

the measurements was not expected.
Starting from the given trailing edge camber angle

_2 " -61.7° (Fig. 1), the inlet flow conditions are
taken from Table 2 and the geometric specifications
from Table 1. The pressure distributions were calcula-
ted for the inlet velocity V - 75.66 (m/s). As shown
in Table 2, this velocity corresponds to the highest
Reynolds number. Re - 6.3x106. The calculation results
are displayed in Fig. 2, where the relative pressure
is plotted against the relative surface distance. As
shown in Fig. 2, the calculated pressure distribution

on the pressure surface agrees well with the experimen-
tal results. However, on the suction surface there is

I J 1 0 .... 'l ] ." ...... i ......... [ ......... [ ......... J ......... _ .... I ' l ' _ ...... [ ......... ] ......... [ ....

1.00

a, 0.00 ---

.0,,

0.80

0.70

J •
v

KJ: i:ll :..t|lllJ ,,,,1,.,.

v_

•
".L.,I .... ! .... I ........ I .... t _._LL .... ,J±J ....... I ....... I ....

0.0 O.l 0.2 0.3 0.4 0,5 0.8 0.7 0.8 0.9 l.O

S/Smax

FIGLilIE 2, - /_JREO Cqe) i/IO CALCULMEO RELATIVE PRESStRE AS k FUNCTION Or RELMI_ SUAFACE D]ST^_E FOR TIlE EXli"

AIIGI.E 02 • -61.7 ° A/IO THE REY'k'OLDS _R RII = 5.3x106.



a significant discrepancy between experiment and calcu-
lation. This discrepancy is particularly pronounced in
the second half of the suction surface and indicates

that this portion is subjected to higher flow deflec-
tion than is established by the given blade camber
angle ¢2 - -61.7°. This statement is verified by con-
sidering the dimensionless pressure integral, which
reflects the blade lift coefficient. Taking the solid-
ity and the inlet flow angle constant, the measured

blade loading is achieved by increasing the exit flow
angle. The cascade calculations using the given _2
produced less than the measured blade loading. There-
fore calculations were made to find a deviation angle

to use in the cascade calculations so that they
would match the experimental measurements. It was
found that a deviation of _ - -2.5 °, which gives in
an exit angle ¢2 = -64.2°, provides the best agreement
between calculation and measurement. Figure 3 shows
the calculation results, which are in a good agreement

with the experimental results. Pressure distributions
were calculated for Reynolds numbers Re = 3.65×106 and

1.33x106 assuming that the above deviation will not
significantly vary with the Reynolds number. Using the
above angle, the pressure distribution for the Reynolds
number Re = 3.6x10 was plotted in Fig. 4 that show
good agreement with experimental data. Similar good
results are obtained for Reynolds number Re = 1.33x106.

This good agreement created confidence in the pressure
calculation method that generates reliable velocity
distribution necessary for heat transfer calculations.

Viscous Flow: Heat Transfer r Boundary Layer Analysis
The heat transfer experiment was analyzed for

three different Reynolds number listed in Table 2. The
corresponding calculated pressure distributions like
those in Figs. 3 and 4 were implemented into the heat

transfer calculation procedure. In accordance with the
experimental data reported by Yeh et al. (1990), a free
stream turbulence level Tu = 0.021 was used. To
account for the turbulent character of the flow in the

calculation procedure, the differential code STAN5
(Crawford and Kays, 1976) serves as the calculation
tool. A discussion of the experimental and calculated
heat transfer results, and the boundary layer calcula-
tion follow.

Heat transfer coefficient. All calculations were

made using the STAN5 boundary layer calculation. Only
the turbulence and transition model available in STAN5

were used. The implementation and form of these models
has been described by Gaugler (1981).

The first case investigated has the lowest Reynolds
number. Starting with Re = 1.3×106 , the corresponding
inlet flow conditions was taken from Table 2, the pres-
sure distribution, and the turbulence intensity of
Tu = 0.021 was used. As previously indicated, because
of thelack of appropriate transition models the aprio-
ri prediction of heat transfer coefficients is hardly

possible. Thus a number of iterations were necessary
to match the experimental and calculation results. In
order to define the iteration range, two calculations
are shown in Fig. 5 as curves 1 and 2. Curve 1, incor-
porates the Dun.ham (1972) transition start and the

Dhawan and Narasimha (1958) transition length correla-
tion, curve 2, utilizes the abrupt transition. The
calculated heat transfer data for the suction surface

(SS) are enclosed by curves I and 2 representing the
above transition models. As shown, the results of cal-

culation for both curves significantly differ from the
experimental data. To define a reasonable transiti'm

start, the average between the location of the maximum
on curve 2 and the minimum on curve i is taken and
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implemented into the next calculation. On the pressure
surface (PS), the calculated heat transfer coefficient,
curve 1, indicates no transition over the entire sur-
face. This circ|_nstance results in a considerably
lower heat transfer coefficient than measured. Assum-

ing an abrupt transition, curve 2, the calculation
shows a significant shift towards the experimental data

and Narasimha,_and the abrupt transition models. As

shown in Fig. 8, on the suction surface, the correla-
tion of Chen and Thyson, curve 1° is slightly closer to
the experimental data. On the pressure surface, the
abrupt transition, curve 3, apparently describes the

situation more realistically. The results of the above
iterative process in coincidence with those by Caugler

with a remaining difference of approximately 20 percent (1985) show clearly that none of the correlations dis-
over the entire pressure surface. This difference is cussed is capable of predicting the transition mechan-
probably attributed to the oversimplification of energy
equation. Attempts to reduce the discrepancy between
calculation and measurement by using the above men-

tioned averaging, the forced transition start at the
relative distance of S/Stot -0.433 has led to signif-
icantly better results on the suction surface as shown
in Fig. 6. On the pressure surface a shift of transi-
tion start to S/Stot - 0.54 has brought only a mar-

ginal improvement.
The second case.investigated pertains to an inter-

mediate Reynolds number Be - 3.67x106. Reasonable
results were obtained for this Reynolds number. The
turbulence intensity was the same as the first case.
As Fig. 7 shows, the heat transfer coefficient is cal-
culated using alternatively kbu-Channam and Shaw
(1980), VanDriest and Blumer (1963), and Dunham start

correlations by keeping the Dhawan and Narasimha's
transition length model. For this particular case and
only for suction surface (SS), the VanDriest and Blumer
model seems to generate results that are slightly
closer to the experimental data. On the pressure sur-
face, however, the application of the above models lead

to almost identical results that significantly differ
from experimental data. Using the VanOriest and Blumer
start correlation as an appropriate model for this par-
ticular case, the heat transfer coefficient is calcula-
ted using alternatively Chen and Thyson (1971), Dhawan

ism. Consequently none of those can be recommended for

predicting the heat transfer coefficient.
The third case utilizes the highest Reynolds

number Re - 6.36x106. Similar to the cases treated
previously, for this case, the corresponding inlet flow
conditions from Table 2, the pressure distribution
displayed in Fig. 3, and the turbulence intensity

Tu = 0.021 were used. As mentioned previously, the
heat transfer data at this Reynolds number is consid-
ered questionable. For the analysis of this case, the
Dunham transition_start and the Dhawan and Narasimha

length correlations were used. As shown in Fig. 9,

there is a substantial disagreement between the experi-
mental and calculation results. The uncertainties in

measured data, the simplification of the governing
equations, the deficiencies in accurately predicting
the transition location, and length have contributed
to this extreme discrepancy in this case.

Boundary layer results. The experimental investi-

gations were restricted to pressure and heat transfer
measurements. However, in connection with this analy-

sis, a brief discussion of boundary layer calculation
results is necessary to explain some discrepancies
encountered in heat transfer analysis discussed above.
Accurate prediction of boundary layer development along
the blade surface is the first condition for a reliable

7
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prediction of the heat transfer and friction coeffici-

ents. The existing differential boundary layer and
heat transfer calculation methods incorporate continu-
ity, momentum, and energy differential equations
together with turbulence models. For an incompressible

flow with small temperature changes {negligible influ-
ence of temperature on viscosity}, the first two equa-
tions are decoupled from the energy equation. The

energy equation, however, is strongly linked with these
two equation. Consequently, any changes in velocity
distribution affect the temperature and therefore the
heat transfer calculation. By looking at the heat
transfer coefficients (Figs. 5 to 9), one encounters

several low amplitude oscillations near the leading
edge on the suction and pressure surface. The location

of these oscillations exactly correspond to those
occurring in t_e boundary layer calculation. The
effect of abrupt changes of velocity distributions are

indirectly seen in Figs. 10 and 11 which display the
course of displacement and momentum thicknesses for
Re = 3.7x106. _As shown in Fig. 11, on the suction sur-

face at S/Stot = 0.5, the displacement thickness
experiences the first steep increase resulting in a
significant underprediction of heat transfer coeffi-
cient that extends from S/Stot = 0.5 to 0.485 in

Fig. 7. Tke overprediction at S/Stot = 0.38 in Fig. 7
is triggered by the oscillation at S/Stot = 0.48 shown

in Fig. 11. These oscillations are produced numerically
and have no physical foundation.
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CONCLUSIONS

The conclusions from this investigation concern
(1) test facility modifications, (2) measurement tech-
nique, and {3) calculation method.

1, It was shown that the pressure distribution
within a cascade can be simulated reasonably well by

using a single blade test section, provided that the
exit fIow angle of the test section coincides with that
of a cascade. At the exit station 2, the existing test
section has a sudden expansion that has affected exit
flow angle required for a periodic cascade flow. This
sudden expansion should be eliminated as shown in
Fig. 12. Also at station 2, the concave channel wall
constricts the flow in what is normally the uncovered
portion of a cascade flow path. The concave channel
wall downstream of this station 2 needs to be adjusta-

ble if cascade blade loadings are to be accurately
simulated.

The convex and concave walls with leading edges
were initially thought to simulate the leading edges of

a cascade. However, they do not serve this purpose for

the reason explained in the text. To obtain a well
defined inlet velocity profile, these edges should be
eliminated as shown in Fig. 12.

For theoretical analysis and validation, it is
helpful to have the information about the inlet and

exit flow and velocity distributions. This requires a
traversing measurement of the flow conditions including
flow angle at [he inlet and exit.

2. This study has shown that the liquid crystal
temperature measurement technique is a simple and
reliable tool and should be further developed. This

technique enables measuring the temperature at any
arbitrary point suck as transition point. Automation
of data acquisition and processing is highly
recommended.

3. The analysis has shown that the code STAN5 is

not capable of apriori predicting the heat transfer
coefficient reliably and quantitatively. Only quali-
tative results were obtained by performing several

FIGUILE12.- _DIFIEDTEST _CTI_,R P,AJqKSTIE _DIFI_TI_5.
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iterationsandadjustments.Thekeyweaknessof this
code is the lack of an appropriate transition model.
This deficiency together with the oversimplification
of energy equation have contributed to over/
underprediction of heat transfer coefficient. The
results underscore the urgent need for establishing a

comprehensive research program on transition phenome-
non. The existing empirical models may be capable of
representing some special cases, they do not describe
the transition phenomenon.
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